Coding of sound intensity in the chick cochlear nerve.
نویسندگان
چکیده
Tuning curves, spontaneous activity, and rate-intensity (RI) functions were obtained from units in the chick cochlear nerve. The characteristic frequency (CF) was determined from each tuning curve. The shape of each RI function was subjectively evaluated and assigned to one of four RI types. The breakpoint, discharge rate at the highest SPLs, and slopes of the primary and secondary segments were quantified for each function. The CF and RI type were then related to these variables. A new RI function was observed in which the discharge activity in the secondary segment diminished as stimulus level increased above the breakpoint. This function was called a "sloping-down" type. In 959 units, saturating, sloping-up, sloping-down, and straight RI types were identified in 39.2, 35.5, 12.6, and 12.7% of the sample, respectively. The slope of the primary segment was nearly the same in each of the four types and averaged 5.48 S. s(-1). dB(-1) across all units. The slopes of the secondary segments formed four groupings when segregated by RI type based on the subjective assignments and averaged 0.03, 1.22, -0.90, and 3.95 S. s(-1). dB(-1) in the saturating, sloping-up, sloping-down, and straight types, respectively. The data describing the secondary segments of all units were fit with a multi-compartment polynomial and showed a continuous distribution that segregated, with some overlap, into the different RI categories. The proportion of RI types, as well as the secondary and primary slopes were approximately constant across CFs. In addition, it would appear that the other parameters that define the four types were, for the most part, homogeneously distributed across the frequency axis of the chick inner ear. Finally, a comparison of RI functions having a common CF suggested that the compressive nonlinearity that determines RI type may be a phenomenon localized to individual hair cells in the bird ear.
منابع مشابه
Neural Coding and Auditory
The long-term goal of this research is to understand the neural mechanisms that mediate the ability of normal-hearing people to understand speech and localize sounds in everyday acoustic environments comprising reverberation and competing sound sources. Our research has been primarily focused in three areas: (1) Effect of reverberation on the directional sensitivity and coding of amplitude enve...
متن کاملA role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem.
The nature of the synaptic connection from the auditory nerve onto the cochlear nucleus neurons has a profound impact on how sound information is transmitted. Short-term synaptic plasticity, by dynamically modulating synaptic strength, filters information contained in the firing patterns. In the sound-localization circuits of the brain stem, the synapses of the timing pathway are characterized ...
متن کاملSynaptic physiology in the cochlear nucleus angularis of the chick.
Nucleus angularis (NA), one of the two cochlear nuclei in birds, is important for processing sound intensity for localization and most likely has role in sound recognition and other auditory tasks. Because the synaptic properties of auditory nerve inputs to the cochlear nuclei are fundamental to the transformation of auditory information, we studied the properties of these synapses onto NA neur...
متن کاملCoding of sound pressure level in the barn owl's auditory nerve.
Rate-intensity functions, i.e., the relation between discharge rate and sound pressure level, were recorded from single auditory nerve fibers in the barn owl. Differences in sound pressure level between the owl's two ears are known to be an important cue in sound localization. One objective was therefore to quantify the discharge rates of auditory nerve fibers, as a basis for higher-order proce...
متن کاملEvaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant
Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and moni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002